On Mean Outer Radii of Random Polytopes

نویسنده

  • D. ALONSO-GUTIÉRREZ
چکیده

In this paper we introduce a new sequence of quantities for random polytopes. Let KN = conv{X1, . . . ,XN} be a random polytope generated by independent random vectors uniformly distributed in an isotropic convex body K of R. We prove that the so-called k-th mean outer radius R̃k(KN ) has order max{ √ k, √ logN}LK with high probability if n ≤ N ≤ e √ . We also show that this is also the right order of the expected value of R̃k(KN ) in the full range n ≤ N ≤ e √

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radii of Regular Polytopes

There are three types of regular polytopes which exist in every dimension d: regular simplices, (hyper-) cubes, and regular cross-polytopes. In this paper we investigate two pairs of inner and outer j-radii (rj, Rj) and (r̄j, R̄j) of these polytopes (inner and outer radii classes are almost always considered in pairs, such that for a 0-symmetric body K and its dual K the inner (outer) radii of K ...

متن کامل

Note on the computational complexity of j-radii of polytopes in n

We show that, for fixed dimension n, the approximation of inner and outer j-radii of polytopes in N", endowed with the Euclidean norm, is in P. Our method is based on the standard polynomial time algorithms for solving a system of polynomial inequalities over the reals in fixed dimension.

متن کامل

Exact analysis of optimal configurations in radii computations

We propose a novel characterization of (radii-) minimal projections of polytopes onto j-dimensional subspaces. Applied on simplices this characterization allows to reduce the computation of an outer radius to a computation in the circumscribing case or to the computation of an outer radius of a lower-dimensional simplex. This allows to close a gap in the knowledge on optimal configurations in r...

متن کامل

Radii Minimal Projections of Polytopes and Constrained Optimization of Symmetric Polynomials

We provide a characterization of the radii minimal projections of polytopes onto j-dimensional subspaces in Euclidean space E. Applied on simplices this characterization allows to reduce the computation of an outer radius to a computation in the circumscribing case or to the computation of an outer radius of a lower-dimensional simplex. In the second part of the paper, we use this characterizat...

متن کامل

Approximation of Smooth Convex Bodies by Random Circumscribed Polytopes

Choose n independent random points on the boundary of a convex body K ⊂Rd . The intersection of the supporting halfspaces at these random points is a random convex polyhedron. The expectations of its volume, its surface area and its mean width are investigated. In the case that the boundary of K is sufficiently smooth, asymptotic expansions as n→∞ are derived even in the case when the curvature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013